6. Syllabus content

All candidates should be taught the Core syllabus content. Candidates who are only taught the Core syllabus content can achieve a maximum of grade C. Candidates aiming for grades A* to C should be taught the Extended syllabus content. The Extended syllabus content includes both the Core and the Supplement.

In delivering the course, teachers should aim to show the relevance of concepts to the learners’ everyday lives and to the world around them. The syllabus content has been designed so as to allow teachers to develop flexible programmes which meet all of the general aims of the syllabus while drawing on appropriate local and international contexts.

Scientific subjects are, by their nature, experimental. Wherever possible, learners should pursue a fully integrated course which allows them to develop their practical skills by carrying out practical work and investigations within all of the topics listed.

1. Characteristics and classification of living organisms

1.1 Characteristics of living organisms

Core
- Describe the characteristics of living organisms by defining the terms:
 - movement as an action by an organism causing a change of position or place
 - respiration as the chemical reactions in cells that break down nutrient molecules and release energy
 - sensitivity as the ability to detect and respond to changes in the environment
 - growth as a permanent increase in size
 - reproduction as the processes that make more of the same kind of organism
 - excretion as removal from organisms of toxic materials and substances in excess of requirements
 - nutrition as taking in of materials for energy, growth and development

Supplement
- Define the terms:
 - movement as an action by an organism or part of an organism causing a change of position or place
 - respiration as the chemical reactions in cells that break down nutrient molecules and release energy for metabolism
 - sensitivity as the ability to detect or sense stimuli in the internal or external environment and to make appropriate responses
 - growth as a permanent increase in size and dry mass by an increase in cell number or cell size or both
 - excretion as removal from organisms of the waste products of metabolism (chemical reactions in cells including respiration), toxic materials, and substances in excess of requirements
 - nutrition as taking in of materials for energy, growth and development; plants require light, carbon dioxide, water and ions; animals need organic compounds and ions and usually need water
1.2 Concept and use of a classification system

Core
- State that organisms can be classified into groups by the features that they share
- Define *species* as a group of organisms that can reproduce to produce fertile offspring
- Define and describe the *binomial system* of naming species as an internationally agreed system in which the scientific name of an organism is made up of two parts showing the genus and species

Supplement
- Explain that classification systems aim to reflect evolutionary relationships
- Explain that classification is traditionally based on studies of morphology and anatomy
- Explain that the sequences of bases in DNA and of amino acids in proteins are used as a more accurate means of classification
- Explain that organisms which share a more recent ancestor (are more closely related) have base sequences in DNA that are more similar than those that share only a distant ancestor

1.3 Features of organisms

Core
- List the features in the cells of all living organisms, limited to cytoplasm, cell membrane and DNA as genetic material
- List the main features used to place animals and plants into the appropriate kingdoms
- List the main features used to place organisms into groups within the animal kingdom, limited to:
 - the main groups of vertebrates: mammals, birds, reptiles, amphibians, fish
 - the main groups of arthropods: myriapods, insects, arachnids, crustaceans

Supplement
- List the features in the cells of all living organisms, limited to ribosomes for protein synthesis and enzymes involved in respiration
- List the main features used to place all organisms into one of the five kingdoms: Animal, Plant, Fungus, Prokaryote, Protoctist
- List the main features used to place organisms into groups within the plant kingdom, limited to ferns and flowering plants (dicotyledons and monocotyledons)
- List the features of viruses, limited to protein coat and genetic material

1.4 Dichotomous keys

Core
- Construct and use simple dichotomous keys based on easily identifiable features
Organisation of the organism

2.1 Cell structure and organisation

Core
- Describe and compare the structure of a plant cell with an animal cell, as seen under a light microscope, limited to cell wall, nucleus, cytoplasm, chloroplasts, vacuoles and location of the cell membrane.
- State the functions of the structures seen under the light microscope in the plant cell and in the animal cell.

Supplement
- State that the cytoplasm of all cells contains structures, limited to ribosomes on rough endoplasmic reticulum and vesicles.
- State that almost all cells, except prokaryotes, have mitochondria and rough endoplasmic reticulum.
- Identify mitochondria and rough endoplasmic reticulum in diagrams and images of cells.
- State that aerobic respiration occurs in mitochondria.
- State that cells with high rates of metabolism require large numbers of mitochondria to provide sufficient energy.

2.2 Levels of organisation

Core
- Relate the structure of the following to their functions:
 - ciliated cells – movement of mucus in the trachea and bronchi
 - root hair cells – absorption
 - xylem vessels – conduction and support
 - palisade mesophyll cells – photosynthesis
 - nerve cells – conduction of impulses
 - red blood cells – transport of oxygen
 - sperm and egg cells – reproduction
- Define **tissue** as a group of cells with similar structures, working together to perform a shared function.
- Define **organ** as a structure made up of a group of tissues, working together to perform specific functions.
- Define **organ system** as a group of organs with related functions, working together to perform body functions.
- State examples of tissues, organs and organ systems from sections 6 to 16.
- Identify the different levels of organisation in drawings, diagrams and images of familiar material.

Supplement
- Identify the different levels of organisation in drawings, diagrams and images of unfamiliar material.
2.3 Size of specimens

Core
- Calculate magnification and size of biological specimens using millimetres as units

Supplement
- Calculate magnification and size of biological specimens using millimetres and micrometres as units

3. Movement in and out of cells

3.1 Diffusion

Core
- Define diffusion as the net movement of particles from a region of their higher concentration to a region of their lower concentration down a concentration gradient, as a result of their random movement
- Describe the importance of diffusion of gases and solutes
- State that substances move into and out of cells by diffusion through the cell membrane

Supplement
- State that the energy for diffusion comes from the kinetic energy of random movement of molecules and ions
- Investigate the factors that influence diffusion, limited to surface area, temperature, concentration gradients and distance

3.2 Osmosis

Core
- State that water diffuses through partially permeable membranes by osmosis
- State that water moves in and out of cells by osmosis through the cell membrane
- Investigate and describe the effects on plant tissues of immersing them in solutions of different concentrations
- State that plants are supported by the pressure of water inside the cells pressing outwards on the cell wall

Supplement
- Define osmosis as the net movement of water molecules from a region of higher water potential (dilute solution) to a region of lower water potential (concentrated solution), through a partially permeable membrane
- Explain the effects on plant tissues of immersing them in solutions of different concentrations by using the terms turgid, turgor pressure, plasmolysis and flaccid
- Explain the importance of water potential and osmosis in the uptake of water by plants
- Explain the importance of water potential and osmosis on animal cells and tissues
- Explain how plants are supported by the turgor pressure within cells, in terms of water pressure acting against an inelastic cell wall
3.3 Active transport

Core
- Define *active transport* as the movement of particles through a cell membrane from a region of lower concentration to a region of higher concentration using energy from respiration.

Supplement
- Discuss the importance of active transport as a process for movement across membranes:
 - e.g. ion uptake by root hairs and uptake of glucose by epithelial cells of villi and kidney tubules
- Explain how protein molecules move particles across a membrane during active transport.

4. Biological molecules

Core
- List the chemical elements that make up:
 - carbohydrates
 - fats
 - proteins
- State that large molecules are made from smaller molecules, limited to:
 - starch and glycogen from glucose
 - cellulose from glucose
 - proteins from amino acids
 - fats and oils from fatty acids and glycerol
- Describe the use of:
 - iodine solution to test for starch
 - Benedict’s solution to test for reducing sugars
 - biuret test for proteins
 - ethanol emulsion test for fats and oils
 - DCPIP test for vitamin C

Supplement
- Explain that different sequences of amino acids give different shapes to protein molecules
- Relate the shape and structure of protein molecules to their function, limited to the active site of enzymes and the binding site of antibodies.

cont.
4. Biological molecules continued

Core

- State that water is important as a solvent

Supplement

- Describe the structure of DNA as:
 - two strands coiled together to form a double helix
 - each strand contains chemicals called bases
 - cross-links between the strands are formed by pairs of bases
 - the bases always pair up in the same way: A with T, and C with G (full names are not required)
- Describe the roles of water as a solvent in organisms with respect to digestion, excretion and transport

5. Enzymes

Core

- Define the term *catalyst* as a substance that increases the rate of a chemical reaction and is not changed by the reaction
- Define *enzymes* as proteins that function as biological catalysts
- Describe why enzymes are important in all living organisms in terms of reaction speed necessary to sustain life
- Describe enzyme action with reference to the complementary shape of an enzyme and its substrate and the formation of a product (knowledge of the term *active site* is not required)
- Investigate and describe the effect of changes in temperature and pH on enzyme activity

Supplement

- Explain enzyme action with reference to the active site, enzyme-substrate complex, substrate and product
- Explain the specificity of enzymes in terms of the complementary shape and fit of the active site with the substrate
- Explain the effect of changes in temperature on enzyme activity in terms of kinetic energy, shape and fit, frequency of effective collisions and denaturation
- Explain the effect of changes in pH on enzyme activity in terms of shape and fit and denaturation
6. Plant nutrition

6.1 Photosynthesis

Core
- Define *photosynthesis* as the process by which plants manufacture carbohydrates from raw materials using energy from light.
- State the word equation for photosynthesis: carbon dioxide + water \rightarrow glucose + oxygen, in the presence of light and chlorophyll.
- Investigate the necessity for chlorophyll, light and carbon dioxide for photosynthesis, using appropriate controls.
- Investigate and describe the effects of varying light intensity, carbon dioxide concentration and temperature on the rate of photosynthesis, e.g. in submerged aquatic plants.

Supplement
- State the balanced chemical equation for photosynthesis: $6\text{CO}_2 + 6\text{H}_2\text{O} \xrightarrow{\text{light}, \text{chlorophyll}} \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2$.
- Explain that chlorophyll transfers light energy into chemical energy in molecules, for the synthesis of carbohydrates.
- Outline the subsequent use and storage of the carbohydrates made in photosynthesis.
- Define the term *limiting factor* as something present in the environment in such short supply that it restricts life processes.
- Identify and explain the limiting factors of photosynthesis in different environmental conditions.
- Describe the use of carbon dioxide enrichment, optimum light and optimum temperatures in glasshouses in temperate and tropical countries.
- Use hydrogencarbonate indicator solution to investigate the effect of gas exchange of an aquatic plant kept in the light and in the dark.

6.2 Leaf structure

Core
- Identify chloroplasts, cuticle, guard cells and stomata, upper and lower epidermis, palisade mesophyll, spongy mesophyll, vascular bundles, xylem and phloem in leaves of a dicotyledonous plant.

Supplement
- Explain how the internal structure of a leaf is adapted for photosynthesis.

6.3 Mineral requirements

Core
- Describe the importance of:
 - nitrate ions for making amino acids
 - magnesium ions for making chlorophyll

Supplement
- Explain the effects of nitrate ion and magnesium ion deficiency on plant growth.
7. Human nutrition

7.1 Diet

Core

- State what is meant by the term balanced diet for humans
- Explain how age, gender and activity affect the dietary needs of humans including during pregnancy and whilst breast-feeding
- Describe the effects of malnutrition in relation to starvation, constipation, coronary heart disease, obesity and scurvy
- List the principal sources of, and describe the dietary importance of:
 - carbohydrates
 - fats
 - proteins
 - vitamins, limited to C and D
 - mineral salts, limited to calcium and iron
 - fibre (roughage)
 - water

Supplement

- Explain the causes and effects of vitamin D and iron deficiencies
- Explain the causes and effects of protein-energy malnutrition, e.g. kwashiorkor and marasmus
7.2 Alimentary canal

Core
- Define *ingestion* as the taking of substances, e.g. food and drink, into the body through the mouth
- Define *mechanical digestion* as the breakdown of food into smaller pieces without chemical change to the food molecules
- Define *chemical digestion* as the breakdown of large, insoluble molecules into small, soluble molecules
- Define *absorption* as the movement of small food molecules and ions through the wall of the intestine into the blood
- Define *assimilation* as the movement of digested food molecules into the cells of the body where they are used, becoming part of the cells
- Define *egestion* as the passing out of food that has not been digested or absorbed, as faeces, through the anus
- Describe diarrhoea as the loss of watery faeces
- Outline the treatment of diarrhoea using oral rehydration therapy
- Describe cholera as a disease caused by a bacterium

Supplement
- Identify the main regions of the alimentary canal and associated organs, limited to mouth, salivary glands, oesophagus, stomach, small intestine (duodenum and ileum), pancreas, liver, gall bladder and large intestine (colon, rectum, anus)
- Describe the functions of the regions of the alimentary canal listed above, in relation to ingestion, digestion, absorption, assimilation and egestion of food
- Explain that the cholera bacterium produces a toxin that causes secretion of chloride ions into the small intestine, causing osmotic movement of water into the gut, causing diarrhoea, dehydration and loss of salts from blood
<table>
<thead>
<tr>
<th>7.3 Mechanical digestion</th>
<th>7.4 Chemical digestion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>Core</td>
</tr>
<tr>
<td>• Identify the types of human teeth (incisors, canines, premolars and molars)</td>
<td>• State the significance of chemical digestion in the alimentary canal in producing small, soluble molecules that can be absorbed</td>
</tr>
<tr>
<td>• Describe the structure of human teeth, limited to enamel, dentine, pulp, nerves and cement, as well as the gums</td>
<td>• State the functions of enzymes as follows:</td>
</tr>
<tr>
<td>• Describe the functions of the types of human teeth in mechanical digestion of food</td>
<td>– amylase breaks down starch to simpler sugars</td>
</tr>
<tr>
<td>• State the causes of dental decay in terms of a coating of bacteria and food on teeth, the bacteria respiring sugars in the food, producing acid which dissolves the enamel and dentine</td>
<td>– protease breaks down protein to amino acids</td>
</tr>
<tr>
<td>• Describe the proper care of teeth in terms of diet and regular brushing</td>
<td>– lipase breaks down fats to fatty acids and glycerol</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supplement</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Describe the digestion of starch in the alimentary canal:</td>
<td>• Describe pepsin and trypsin as two protease enzymes that function in different parts of the alimentary canal:</td>
</tr>
<tr>
<td>– amylase is secreted into the alimentary canal and breaks down starch to maltose</td>
<td>– pepsin in the stomach</td>
</tr>
<tr>
<td>– maltose is broken down by maltase to glucose on the membranes of the epithelium lining the small intestine</td>
<td>– trypsin in the small intestine</td>
</tr>
<tr>
<td>• Explain the functions of the hydrochloric acid in gastric juice, limited to killing bacteria in food and giving an acid pH for enzymes</td>
<td>• Outline the role of bile in neutralising the acidic mixture of food and gastric juices entering the duodenum from the stomach, to provide a suitable pH for enzyme action</td>
</tr>
<tr>
<td>• Outline the role of bile in emulsifying fats to increase the surface area for the chemical digestion of fat to fatty acids and glycerol by lipase</td>
<td></td>
</tr>
</tbody>
</table>
7.5 Absorption

Core
- Identify the small intestine as the region for the absorption of digested food

- State that water is absorbed in both the small intestine and the colon, but that most absorption of water happens in the small intestine

Supplement
- Explain the significance of villi and microvilli in increasing the internal surface area of the small intestine
- Describe the structure of a villus
- Describe the roles of capillaries and lacteals in villi

8. Transport in plants

8.1 Transport in plants

Core
- State the functions of xylem and phloem
- Identify the position of xylem and phloem as seen in sections of roots, stems and leaves, limited to non-woody dicotyledonous plants

Supplement
- Explain that the large surface area of root hairs increases the rate of the absorption of water by osmosis and ions by active transport

8.2 Water uptake

Core
- Identify root hair cells, as seen under the light microscope, and state their functions
- State the pathway taken by water through root, stem and leaf as root hair cell, root cortex cells, xylem and mesophyll cells
- Investigate, using a suitable stain, the pathway of water through the above ground parts of a plant
8.3 Transpiration

Core
- State that water is transported from the roots to leaves through the xylem vessels
- Define *transpiration* as loss of water vapour from plant leaves by evaporation of water at the surfaces of the mesophyll cells followed by diffusion of water vapour through the stomata

Supplement
- Investigate and describe the effects of variation of temperature and humidity on transpiration rate
- Explain how water vapour loss is related to the large surface area of cell surfaces, interconnecting air spaces and stomata
- Explain the mechanism by which water moves upwards in the xylem in terms of a transpiration pull that draws up a column of water molecules, held together by cohesion
- Explain how and why wilting occurs
- Explain the effects of variation of temperature and humidity on transpiration rate

8.4 Translocation

Supplement
- Define *translocation* in terms of the movement of sucrose and amino acids in phloem:
 - from regions of production (source)
 - to regions of storage OR to regions where they are used in respiration or growth (sink)
- Explain that some parts of a plant may act as a source and a sink at different times during the life of a plant
9. Transport in animals

9.1 Transport in animals

Core
- Describe the circulatory system as a system of blood vessels with a pump and valves to ensure one-way flow of blood

Supplement
- Describe the single circulation of a fish
- Describe the double circulation of a mammal
- Explain the advantages of a double circulation

9.2 Heart

Core
- Name and identify the structures of the mammalian heart, limited to the muscular wall, the septum, the left and right ventricles and atria, one-way valves and coronary arteries
- State that blood is pumped away from the heart into arteries and returns to the heart in veins
- State that the activity of the heart may be monitored by ECG, pulse rate and listening to sounds of valves closing
- Investigate and state the effect of physical activity on the pulse rate
- Describe coronary heart disease in terms of the blockage of coronary arteries and state the possible risk factors as diet, stress, smoking, genetic predisposition, age and gender

Supplement
- Name and identify the atroventricular and semilunar valves in the mammalian heart
- Explain the relative thickness:
 - of the muscle wall of the left and right ventricles
 - of the muscle wall of the atria compared to that of the ventricles
- Explain the importance of the septum in separating oxygenated and deoxygenated blood
- Describe the functioning of the heart in terms of the contraction of muscles of the atria and ventricles and the action of the valves
- Explain the effect of physical activity on the heart rate
- Discuss the roles of diet and exercise in the prevention of coronary heart disease
- Describe ways in which coronary heart disease may be treated, limited to drug treatment with aspirin and surgery (stents, angioplasty and by-pass)
<table>
<thead>
<tr>
<th>9.3 Blood and lymphatic vessels</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>Core</td>
</tr>
<tr>
<td>• Describe the structure and functions of arteries, veins and capillaries</td>
<td>• Explain how the structures of arteries, veins and capillaries are adapted for their functions</td>
</tr>
<tr>
<td>• Name the main blood vessels to and from the:</td>
<td>• State the function of arterioles, venules and shunt vessels</td>
</tr>
<tr>
<td>– heart, limited to vena cava, aorta, pulmonary artery and pulmonary vein</td>
<td>• Outline the lymphatic system in terms of lymphatic vessels and lymph nodes</td>
</tr>
<tr>
<td>– lungs, limited to the pulmonary artery and pulmonary vein</td>
<td>• Describe the function of the lymphatic system in the circulation of body fluids and the protection of the body from infection</td>
</tr>
<tr>
<td>– kidney, limited to the renal artery and renal vein</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9.4 Blood</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>Core</td>
</tr>
<tr>
<td>• List the components of blood as red blood cells, white blood cells, platelets and plasma</td>
<td>• Identify lymphocyte and phagocyte white blood cells, as seen under the light microscope, on prepared slides and in diagrams and photomicrographs</td>
</tr>
<tr>
<td>• Identify red and white blood cells, as seen under the light microscope, on prepared slides and in diagrams and photomicrographs</td>
<td>• State the functions of:</td>
</tr>
<tr>
<td>• State the functions of the following components of blood:</td>
<td>– lymphocytes – antibody production</td>
</tr>
<tr>
<td>– red blood cells in transporting oxygen, including the role of haemoglobin</td>
<td>– phagocytes – phagocytosis</td>
</tr>
<tr>
<td>– white blood cells in phagocytosis and antibody production</td>
<td>• Describe the process of clotting as the conversion of fibrinogen to fibrin to form a mesh</td>
</tr>
<tr>
<td>– platelets in clotting (details are not required)</td>
<td>• State the roles of blood clotting as preventing blood loss and preventing the entry of pathogens</td>
</tr>
<tr>
<td>– plasma in the transport of blood cells, ions, soluble nutrients, hormones and carbon dioxide</td>
<td>• Describe the transfer of materials between capillaries and tissue fluid (details of the roles of water potential and hydrostatic pressure are not required)</td>
</tr>
</tbody>
</table>
10. Diseases and immunity

Core
- Define *pathogen* as a disease-causing organism
- Define *transmissible disease* as a disease in which the pathogen can be passed from one host to another
- State that the pathogen for a transmissible disease may be transmitted either through direct contact, e.g. through blood or other body fluids, or indirectly, e.g. from contaminated surfaces or food, from animals, or from the air
- State that the body has defences:
 - mechanical barriers, limited to skin and hairs in the nose
 - chemical barriers, limited to mucus and stomach acid
 - cells, limited to phagocytosis and antibody production by white blood cells
 - which can be enhanced by vaccination
- Explain the importance of hygienic food preparation, good personal hygiene, waste disposal and sewage treatment in controlling the spread of disease

Supplement
- State that antibodies lock on to antigens leading to direct destruction of pathogens, or marking of pathogens for destruction by phagocytes
- Explain how each pathogen has its own antigens, which have specific shapes, so specific antibodies which fit the specific shapes of the antigens are needed
- Define *active immunity* as defence against a pathogen by antibody production in the body
- Explain that active immunity is gained after an infection by a pathogen, or by vaccination
- Explain the process of vaccination:
 - harmless pathogen given which has antigens
 - antigens trigger an immune response by lymphocytes which produce antibodies
 - memory cells are produced that give long-term immunity
- Explain the role of vaccination in controlling the spread of diseases
- Explain that *passive immunity* is short-term defence against a pathogen by antibodies acquired from another individual, e.g. mother to infant
- State that memory cells are not produced in passive immunity
- Explain the importance of passive immunity for breast-fed infants
- State that some diseases are caused by the immune system targeting and destroying body cells, limited to Type 1 diabetes
11. Gas exchange in humans

Core
- List the features of gas exchange surfaces in humans, limited to large surface area, thin surface, good blood supply and good ventilation with air
- Name and identify the lungs, diaphragm, ribs, intercostal muscles, larynx, trachea, bronchi, bronchioles, alveoli and associated capillaries
- State the differences in composition between inspired and expired air, limited to oxygen, carbon dioxide and water vapour
- Use limewater as a test for carbon dioxide to investigate the differences in composition between inspired and expired air
- Investigate and describe the effects of physical activity on rate and depth of breathing

Supplement
- Name and identify the internal and external intercostal muscles
- State the functions of the cartilage in the trachea
- Explain the role of the ribs, the internal and external intercostal muscles and the diaphragm in producing volume and pressure changes in the thorax leading to the ventilation of the lungs
- Explain the differences in composition between inspired and expired air
- Explain the link between physical activity and rate and depth of breathing in terms of the increased carbon dioxide concentration in the blood, detected by the brain, causing an increased rate of breathing
- Explain the role of goblet cells, mucus and ciliated cells in protecting the gas exchange system from pathogens and particles

12. Respiration

12.1 Respiration

Core
- State the uses of energy in the body of humans: muscle contraction, protein synthesis, cell division, active transport, growth, the passage of nerve impulses and the maintenance of a constant body temperature
- State that respiration involves the action of enzymes in cells

Supplement
- Explain the link between physical activity and rate and depth of breathing in terms of the increased carbon dioxide concentration in the blood, detected by the brain, causing an increased rate of breathing
- Explain the role of goblet cells, mucus and ciliated cells in protecting the gas exchange system from pathogens and particles
12.2 Aerobic respiration

Core
- Define *aerobic respiration* as the chemical reactions in cells that use oxygen to break down nutrient molecules to release energy.
- State the word equation for aerobic respiration as glucose + oxygen → carbon dioxide + water.
- Investigate the uptake of oxygen by respiring organisms, such as arthropods and germinating seeds.

Supplement
- State the balanced chemical equation for aerobic respiration as $\text{C}_6\text{H}_12\text{O}_6 + 6\text{O}_2 \rightarrow 6\text{CO}_2 + 6\text{H}_2\text{O}$.
- Investigate the effect of temperature on the rate of respiration of germinating seeds.

12.3 Anaerobic respiration

Core
- Define *anaerobic respiration* as the chemical reactions in cells that break down nutrient molecules to release energy without using oxygen.
- State the word equations for anaerobic respiration in muscles during vigorous exercise (glucose → lactic acid) and the microorganism yeast (glucose → alcohol + carbon dioxide).
- State that anaerobic respiration releases much less energy per glucose molecule than aerobic respiration.

Supplement
- State the balanced chemical equation for anaerobic respiration in the microorganism yeast as $\text{C}_6\text{H}_12\text{O}_6 \rightarrow 2\text{C}_2\text{H}_5\text{OH} + 2\text{CO}_2$.
- State that lactic acid builds up in muscles and blood during vigorous exercise causing an oxygen debt.
- Outline how the oxygen debt is removed during recovery, limited to:
 - aerobic respiration of lactic acid in the liver
 - continuation, after exercise, of fast heart rate to transport lactic acid in blood from muscles to the liver
 - continuation, after exercise, of deeper breathing supplying oxygen for aerobic respiration of lactic acid.
13. Excretion in humans

<table>
<thead>
<tr>
<th>Core</th>
<th>Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>• State that urea is formed in the liver from excess amino acids</td>
<td>• Describe the role of the liver in the assimilation of amino acids by converting them to proteins, including plasma proteins, e.g. fibrinogen</td>
</tr>
<tr>
<td>• State that carbon dioxide is excreted through the lungs</td>
<td>• Define deamination as the removal of the nitrogen-containing part of amino acids to form urea</td>
</tr>
<tr>
<td>• State that the kidneys excrete urea and excess water and salts</td>
<td>• Explain the need for excretion, limited to toxicity of urea and carbon dioxide</td>
</tr>
<tr>
<td>• Explain that the volume and concentration of urine produced is affected by water intake, temperature and exercise</td>
<td>• Outline the structure of the kidney, limited to the cortex, medulla and ureter</td>
</tr>
<tr>
<td>• Identify on drawings, diagrams and images, the ureters, bladder and urethra</td>
<td>• Outline the structure and functioning of a kidney tubule, including:</td>
</tr>
<tr>
<td></td>
<td>– the role of the glomerulus in the filtration from the blood of water, glucose, urea and salts</td>
</tr>
<tr>
<td></td>
<td>– the role of the tubule in the reabsorption of all of the glucose, most of the water and some salts back into the blood, leading to the concentration of urea in the urine as well as loss of excess water and salts (details of these processes are not required)</td>
</tr>
<tr>
<td></td>
<td>• Explain dialysis in terms of salt balance, the maintenance of glucose concentration and the removal of urea</td>
</tr>
<tr>
<td></td>
<td>• Describe the use of dialysis in kidney machines</td>
</tr>
<tr>
<td></td>
<td>• Discuss the advantages and disadvantages of kidney transplants, compared with dialysis</td>
</tr>
</tbody>
</table>
14. Coordination and response

14.1 Nervous control in humans

Core
- Describe a nerve impulse as an electrical signal that passes along nerve cells called neurones
- Describe the human nervous system in terms of:
 - the central nervous system consisting of brain and spinal cord
 - the peripheral nervous system
 - coordination and regulation of body functions
- Identify motor (effector), relay (connector) and sensory neurones from diagrams
- Describe a simple reflex arc in terms of receptor, sensory neurone, relay neurone, motor neurones and effector
- Describe a reflex action as a means of automatically and rapidly integrating and coordinating stimuli with the responses of effectors (muscles and glands)
- Define a *synapse* as a junction between two neurones

Supplement
- Distinguish between voluntary and involuntary actions
- Describe the structure of a synapse, including the presence of neurotransmitter-containing vesicles, the synaptic cleft and neurotransmitter receptor molecules
- Describe how an impulse triggers the release of a neurotransmitter from vesicles into the synaptic gap and how the neurotransmitter diffuses across to bind with receptor molecules, in the membrane of the neurone after the synaptic gap, causing the impulse to continue
- State that in a reflex arc the synapses ensure that impulses travel in one direction only
- State that many drugs, e.g. heroin act upon synapses
14.2 Sense organs

Core
- Define *sense organs* as groups of receptor cells responding to specific stimuli: light, sound, touch, temperature and chemicals
- Identify the structures of the eye, limited to cornea, iris, pupil, lens, retina, optic nerve and blind spot
- Describe the function of each part of the eye, limited to:
 - cornea – refracts light
 - iris – controls how much light enters pupil
 - lens – focuses light onto retina
 - retina – contains light receptors, some sensitive to light of different colours
 - optic nerve – carries impulses to the brain
- Explain the pupil reflex in terms of light intensity and pupil diameter only

Supplement
- Explain the pupil reflex in terms of light intensity and antagonistic action of circular and radial muscles in the iris
- Explain accommodation to view near and distant objects in terms of the contraction and relaxation of the ciliary muscles, tension in the suspensory ligaments, shape of the lens and refraction of light
- State the distribution of rods and cones in the retina of a human
- Outline the function of rods and cones, limited to greater sensitivity of rods for night vision and three different kinds of cones absorbing light of different colours for colour vision
- Identify the position of the fovea
14.3 Hormones in humans

Core
- Define a *hormone* as a chemical substance, produced by a gland and carried by the blood, which alters the activity of one or more specific target organs.
- Identify specific endocrine glands and their secretions, limited to adrenal glands and adrenaline, pancreas and insulin, testes and testosterone and ovaries and oestrogen.
- Describe adrenaline as the hormone secreted in ‘fight or flight’ situations and its effects, limited to increased breathing and pulse rate and widened pupils.
- Give examples of situations in which adrenaline secretion increases.
- State the functions of insulin, oestrogen and testosterone.

Supplement
- Discuss the role of the hormone adrenaline in the chemical control of metabolic activity, including increasing the blood glucose concentration and pulse rate.
- Compare nervous and hormonal control systems in terms of speed and longevity of action.

14.4 Homeostasis

Core
- Define *homeostasis* as the maintenance of a constant internal environment.
- Name and identify on a diagram of the skin: hairs, hair erector muscles, sweat glands, receptors, sensory neurones, blood vessels and fatty tissue.
- Describe the maintenance of a constant internal body temperature in humans in terms of insulation, sweating, shivering and the role of the brain (limited to blood temperature receptors and coordination).

Supplement
- Explain that homeostasis is the control of internal conditions within set limits.
- Explain the concept of control by negative feedback.
- Describe the control of the glucose concentration of the blood by the liver and the roles of insulin and glucagon from the pancreas.
- Outline the symptoms and treatment of Type 1 diabetes (detail of β cells is not required).
- Describe the maintenance of a constant internal body temperature in humans in terms of vasodilation and vasoconstriction of arterioles supplying skin surface capillaries.
14.5 Tropic responses

Core
- Define **gravitropism** as a response in which parts of a plant grow towards or away from gravity
- Define **phototropism** as a response in which parts of a plant grow towards or away from the direction from which light is coming
- Investigate gravitropism and phototropism in shoots and roots

Supplement
- Explain phototropism and gravitropism of a shoot as examples of the chemical control of plant growth
- Explain the role of auxin in controlling shoot growth, limited to:
 - auxin made in shoot tip (only)
 - auxin spreads through the plant from the shoot tip
 - auxin is unequally distributed in response to light and gravity
 - auxin stimulates cell elongation
- Describe the use in weedkillers of the synthetic plant hormone 2,4-D

15. Drugs

15.1 Drugs

Core
- Define a **drug** as any substance taken into the body that modifies or affects chemical reactions in the body

15.2 Medicinal drugs

Core
- Describe the use of antibiotics for the treatment of bacterial infection
- State that some bacteria are resistant to antibiotics which reduces the effectiveness of antibiotics
- State that antibiotics kill bacteria but do not affect viruses

Supplement
- Explain how development of resistant bacteria such as MRSA can be minimised, limited to using antibiotics only when essential and ensuring treatment is completed
- Explain why antibiotics kill bacteria, but do not affect viruses
15.3 Misused drugs

Core
- Describe the effects of excessive alcohol consumption and abuse of heroin, limited to:
 - powerful depressant drugs
 - effect on reaction times and self-control
 - addiction and withdrawal symptoms
 - negative social implications, e.g. crime
- State that injecting heroin can cause infections such as HIV
- State that excessive alcohol consumption can cause liver damage
- State that tobacco smoking can cause chronic obstructive pulmonary disease (COPD), lung cancer and coronary heart disease
- Describe the effects on the gas exchange system of tobacco smoke and its major toxic components, limited to carbon monoxide, nicotine and tar
- State that the liver is the site of breakdown of alcohol and other toxins

Supplement
- Explain how heroin affects the nervous system, limited to its effect on the function of synapses
- Discuss the evidence for the link between smoking and lung cancer
- Discuss the use of hormones to improve sporting performance, limited to testosterone and anabolic steroids

16. Reproduction

16.1 Asexual reproduction

Core
- Define *asexual reproduction* as a process resulting in the production of genetically identical offspring from one parent
- Identify examples of asexual reproduction from information provided

Supplement
- Discuss the advantages and disadvantages of asexual reproduction:
 - to a population of a species in the wild
 - to crop production
16.2 Sexual reproduction

Core
- Define *sexual reproduction* as a process involving the fusion of the nuclei of two gametes (sex cells) to form a zygote and the production of offspring that are genetically different from each other.
- Define *fertilisation* as the fusion of gamete nuclei.

Supplement
- State that the nuclei of gametes are haploid and that the nucleus of a zygote is diploid.
- Discuss the advantages and disadvantages of sexual reproduction:
 - to a population of a species in the wild
 - to crop production.

16.3 Sexual reproduction in plants

Core
- Identify and draw, using a hand lens if necessary, the sepals, petals, stamens, filaments and anthers, carpels, style, stigma, ovary and ovules, of an insect-pollinated flower.
- State the functions of the sepals, petals, anthers, stigmas and ovaries.
- Use a hand lens to identify and describe the anthers and stigmas of a wind-pollinated flower.
- Distinguish between the pollen grains of insect-pollinated and wind-pollinated flowers.
- Define *pollination* as the transfer of pollen grains from the anther to the stigma.
- State that fertilisation occurs when a pollen nucleus fuses with a nucleus in an ovule.
- Describe the structural adaptations of insect-pollinated and wind-pollinated flowers.
- Investigate and state the environmental conditions that affect germination of seeds, limited to the requirement for water, oxygen and a suitable temperature.

Supplement
- Define *self-pollination* as the transfer of pollen grains from the anther of a flower to the stigma of the same flower or different flower on the same plant.
- Define *cross-pollination* as transfer of pollen grains from the anther of a flower to the stigma of a flower on a different plant of the same species.
- Discuss the implications to a species of self-pollination and cross-pollination in terms of variation, capacity to respond to changes in the environment and reliance on pollinators.
- Describe the growth of the pollen tube and its entry into the ovule followed by fertilisation (details of production of endosperm and development are not required).
16.4 Sexual reproduction in humans

Core
- Identify and name on diagrams of the male reproductive system: the testes, scrotum, sperm ducts, prostate gland, urethra and penis, and state the functions of these parts
- Identify and name on diagrams of the female reproductive system: the ovaries, oviducts, uterus, cervix and vagina, and state the functions of these parts
- Describe fertilisation as the fusion of the nuclei from a male gamete (sperm) and a female gamete (egg cell/ovum)
- State the adaptive features of sperm, limited to flagellum and the presence of enzymes
- State the adaptive features of egg cells, limited to energy stores and a jelly coating that changes after fertilisation
- State that in early development, the zygote forms an embryo which is a ball of cells that implants into the wall of the uterus
- State the functions of the umbilical cord, placenta, amniotic sac and amniotic fluid
- Outline the growth and development of the fetus in terms of increasing complexity in the early stages and increasing size towards the end of pregnancy
- Describe the ante-natal care of pregnant women, limited to special dietary needs and the harm from smoking and alcohol consumption
- Outline the processes involved in labour and birth, limited to:
 - breaking of the amniotic sac
 - contraction of the muscles in the uterus wall
 - dilation of the cervix
 - passage through the vagina
 - tying and cutting the umbilical cord
 - delivery of the afterbirth

Supplement
- Compare male and female gametes in terms of size, structure, motility and numbers
- Explain the adaptive features of sperm, limited to flagellum, mitochondria and enzymes in the acrosome
- Explain the adaptive features of egg cells, limited to energy stores and the jelly coat that changes at fertilisation
- Describe the function of the placenta and umbilical cord in relation to exchange of dissolved nutrients, gases and excretory products and providing a barrier to toxins and pathogens (structural details are not required)
- State that some toxins, e.g. nicotine, and pathogens, e.g. rubella virus, can pass across the placenta and affect the fetus
- Discuss the advantages and disadvantages of breast-feeding compared with bottle-feeding using formula milk
<table>
<thead>
<tr>
<th>16.5 Sex hormones in humans</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>Supplement</td>
</tr>
<tr>
<td>• Describe the roles of testosterone and oestrogen in the development and regulation of secondary sexual characteristics during puberty</td>
<td>• Describe the sites of production of oestrogen and progesterone in the menstrual cycle and in pregnancy</td>
</tr>
<tr>
<td>• Describe the menstrual cycle in terms of changes in the ovaries and in the lining of the uterus</td>
<td>• Explain the role of hormones in controlling the menstrual cycle and pregnancy, limited to FSH, LH, progesterone and oestrogen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16.6 Methods of birth control in humans</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>Supplement</td>
</tr>
<tr>
<td>• Outline the following methods of birth control:</td>
<td>• Outline the use of hormones in contraception and fertility treatments</td>
</tr>
<tr>
<td>– natural, limited to abstinence, monitoring body temperature and cervical mucus</td>
<td>- Outline artificial insemination (AI)</td>
</tr>
<tr>
<td>– chemical, limited to IUD, IUS, contraceptive pill, implant and injection</td>
<td>- Outline in vitro fertilisation (IVF)</td>
</tr>
<tr>
<td>– barrier, limited to condom, femidom, diaphragm</td>
<td>- Discuss the social implications of contraception and fertility treatments</td>
</tr>
<tr>
<td>– surgical, limited to vasectomy and female sterilisation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16.7 Sexually transmitted infections (STIs)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>Supplement</td>
</tr>
<tr>
<td>• Define sexually transmitted infection as an infection that is transmitted via body fluids through sexual contact</td>
<td>• Outline how HIV affects the immune system, limited to decreased lymphocyte numbers and reduced ability to produce antibodies</td>
</tr>
<tr>
<td>• State that human immunodeficiency virus (HIV) is an example of an STI</td>
<td></td>
</tr>
<tr>
<td>• Explain how the spread of STIs is controlled</td>
<td></td>
</tr>
<tr>
<td>• Describe the methods of transmission of HIV</td>
<td></td>
</tr>
<tr>
<td>• State that HIV infection may lead to AIDS</td>
<td></td>
</tr>
</tbody>
</table>
17. Inheritance

17.1 Inheritance

Core
- Define inheritance as the transmission of genetic information from generation to generation.

17.2 Chromosomes, genes and proteins

Core
- Define chromosome as a thread-like structure of DNA, carrying genetic information in the form of genes.
- Define gene as a length of DNA that codes for a protein.
- Define allele as a version of a gene.
- Describe the inheritance of sex in humans with reference to XX and XY chromosomes.

Supplement
- Explain that the sequence of bases in a gene is the genetic code for putting together amino acids in the correct order to make a specific protein (knowledge of the details of nucleotide structure is not required).
- Explain that DNA controls cell function by controlling the production of proteins (some of which are enzymes), antibodies and receptors for neurotransmitters.
- Explain how a protein is made, limited to:
 - the gene coding for the protein remains in the nucleus
 - mRNA molecules carry a copy of the gene to the cytoplasm
 - the mRNA passes through ribosomes
 - the ribosome assembles amino acids into protein molecules
 - the specific order of amino acids is determined by the sequence of bases in the mRNA (knowledge of the details of transcription or translation is not required).
- Explain that all body cells in an organism contain the same genes, but many genes in a particular cell are not expressed because the cell only makes the specific proteins it needs.

cont.
17.2 Chromosomes, genes and proteins continued

Core
- Define a *haploid nucleus* as a nucleus containing a single set of unpaired chromosomes, e.g. in gametes
- Define a *diploid nucleus* as a nucleus containing two sets of chromosomes, e.g. in body cells
- State that in a diploid cell, there is a pair of each type of chromosome and in a human diploid cell there are 23 pairs

Supplement
- State that the exact duplication of chromosomes occurs before mitosis
- State that during mitosis, the copies of chromosomes separate, maintaining the chromosome number (details of stages of mitosis are not required)
- Describe stem cells as unspecialised cells that divide by mitosis to produce daughter cells that can become specialised for specific functions

17.3 Mitosis

Core
- Define *mitosis* as nuclear division giving rise to genetically identical cells (details of stages are not required)
- State the role of mitosis in growth, repair of damaged tissues, replacement of cells and asexual reproduction

Supplement
- State that the exact duplication of chromosomes occurs before mitosis
- State that during mitosis, the copies of chromosomes separate, maintaining the chromosome number (details of stages of mitosis are not required)
- Describe stem cells as unspecialised cells that divide by mitosis to produce daughter cells that can become specialised for specific functions

17.4 Meiosis

Core
- Define *meiosis* as nuclear division giving rise to cells that are genetically different (details of stages are not required)
- State that meiosis is involved in the production of gametes

Supplement
- Define *meiosis* as reduction division in which the chromosome number is halved from diploid to haploid resulting in genetically different cells (details of stages are not required)
- Explain how meiosis produces variation by forming new combinations of maternal and paternal chromosomes (specific details are not required)
17.5 Monohybrid inheritance

Core
- Define **genotype** as the genetic make-up of an organism in terms of the alleles present
- Define **phenotype** as the observable features of an organism
- Define **homozygous** as having two identical alleles of a particular gene
- State that two identical homozygous individuals that breed together will be pure-breeding
- Define **heterozygous** as having two different alleles of a particular gene
- State that a heterozygous individual will not be pure-breeding
- Define **dominant** as an allele that is expressed if it is present
- Define **recessive** as an allele that is only expressed when there is no dominant allele of the gene present
- Interpret pedigree diagrams for the inheritance of a given characteristic
- Use genetic diagrams to predict the results of monohybrid crosses and calculate phenotypic ratios, limited to 1:1 and 3:1 ratios
- Use Punnett squares in crosses which result in more than one genotype to work out and show the possible different genotypes

Supplement
- Explain how to use a test cross to identify an unknown genotype
- Explain co-dominance by reference to the inheritance of ABO blood groups – phenotypes being A, B, AB and O blood groups and alleles being I^A^, I^B^ and I^O^.
- Define a **sex-linked characteristic** as a characteristic in which the gene responsible is located on a sex chromosome and that this makes it more common in one sex than in the other
- Describe colour blindness as an example of sex linkage
- Use genetic diagrams to predict the results of monohybrid crosses involving co-dominance or sex linkage and calculate phenotypic ratios
18. Variation and selection

18.1 Variation

Core
- Define variation as differences between individuals of the same species
- Distinguish between phenotypic variation and genetic variation
- State that continuous variation results in a range of phenotypes between two extremes, e.g. height in humans
- State that discontinuous variation results in a limited number of phenotypes with no intermediates, e.g. tongue rolling
- Record and present the results of investigations into continuous and discontinuous variation
- Define mutation as genetic change
- State that mutation is the way in which new alleles are formed
- State that ionising radiation and some chemicals increase the rate of mutation

Supplement
- State that phenotypic variation is caused by both genetic and environmental factors
- State that discontinuous variation is mostly caused by genes alone, e.g. A, B, AB and O blood groups in humans
- Define gene mutation as a change in the base sequence of DNA
- Describe the symptoms of sickle-cell anaemia
- Explain how a change in the base sequence of the gene for haemoglobin results in abnormal haemoglobin and sickle-shaped red blood cells
- Use genetic diagrams to show how sickle-cell anaemia is inherited
- State that people who are heterozygous (Hb\(^5\) Hb\(^A\)) for the sickle-cell allele have a resistance to malaria
- Explain the distribution of the sickle-cell allele in human populations with reference to the distribution of malaria

(Teaching of human inherited conditions should be done with sensitivity at all times.)
18.2 Adaptive features

Core
- Define *adaptive feature* as an inherited feature that helps an organism to survive and reproduce in its environment.
- Interpret images or other information about a species to describe its adaptive features.

Supplement
- Define *adaptive feature* as the inherited functional features of an organism that increase its fitness.
- Define *fitness* as the probability of an organism surviving and reproducing in the environment in which it is found.
- Explain the adaptive features of hydrophytes and xerophytes to their environments.

18.3 Selection

Core
- Describe natural selection with reference to:
 - variation within populations
 - production of many offspring
 - competition for resources
 - struggle for survival
 - reproduction by individuals that are better adapted to the environment than others
 - passing on of their alleles to the next generation
- Describe selective breeding with reference to:
 - selection by humans of individuals with desirable features
 - crossing these individuals to produce the next generation
 - selection of offspring showing the desirable features

Supplement
- Describe evolution as the change in adaptive features of a population over time as the result of natural selection.
- Define the *process of adaptation* as the process, resulting from natural selection, by which populations become more suited to their environment over many generations.
- Describe the development of strains of antibiotic resistant bacteria as an example of evolution by natural selection.
- State the differences between natural and artificial selection.
- Outline how selective breeding by artificial selection is carried out over many generations to improve crop plants and domesticated animals.
19. Organisms and their environment

19.1 Energy flow

Core
- State that the Sun is the principal source of energy input to biological systems

Supplement
- Describe the flow of energy through living organisms including light energy from the sun and chemical energy in organisms and its eventual transfer to the environment

19.2 Food chains and food webs

Core
- Define a *food chain* as showing the transfer of energy from one organism to the next, beginning with a producer
- State that energy is transferred between organisms in a food chain by ingestion
- Construct simple food chains
- Define a *food web* as a network of interconnected food chains
- Define *producer* as an organism that makes its own organic nutrients, usually using energy from sunlight, through photosynthesis
- Define *consumer* as an organism that gets its energy by feeding on other organisms
- State that consumers may be classed as primary, secondary and tertiary according to their position in a food chain
- Define *herbivore* as an animal that gets its energy by eating plants
- Define *carnivore* as an animal that gets its energy by eating other animals
- Define *decomposer* as an organism that gets its energy from dead or waste organic material
- Interpret food chains and food webs in terms of identifying producers and consumers

Supplement
- Describe how energy is transferred between trophic levels
- Define *trophic level* as the position of an organism in a food chain, food web, pyramid of numbers or pyramid of biomass
- Explain why the transfer of energy from one trophic level to another is inefficient
- Explain why food chains usually have fewer than five trophic levels
- Explain why there is a greater efficiency in supplying plants as human food, and that there is a relative inefficiency in feeding crop plants to livestock that will be used as food
- Identify producers, primary consumers, secondary consumers, tertiary consumers and quaternary consumers as the trophic levels in food webs, food chains, pyramids of numbers and pyramids of biomass
19.2 Food chains and food webs continued

Core
- Use food chains and food webs to describe the impacts humans have through over-harvesting of food species and through introducing foreign species to a habitat
- Draw, describe and interpret pyramids of numbers

Supplement
- Draw, describe and interpret pyramids of biomass
- Discuss the advantages of using a pyramid of biomass rather than a pyramid of numbers to represent a food chain

19.3 Nutrient cycles

Core
- Describe the carbon cycle, limited to photosynthesis, respiration, feeding, decomposition, fossilisation and combustion
- Discuss the effects of the combustion of fossil fuels and the cutting down of forests on the carbon dioxide concentrations in the atmosphere
- Describe the water cycle, limited to evaporation, transpiration, condensation and precipitation

Supplement
- Describe the nitrogen cycle in terms of:
 - decomposition of plant and animal protein to ammonium ions
 - nitrification
 - nitrogen fixation by lightning and bacteria
 - absorption of nitrate ions by plants
 - production of amino acids and proteins
 - feeding and digestion of proteins
 - deamination
 - denitrification
- State the roles of microorganisms in the nitrogen cycle, limited to decomposition, nitrification, nitrogen fixation and denitrification (generic names of individual bacteria, e.g. *Rhizobium*, are not required)
19.4 Population size

Core
- Define *population* as a group of organisms of one species, living in the same area, at the same time.
- Identify and state the factors affecting the rate of population growth for a population of an organism, limited to food supply, predation and disease.
- Discuss the increase in human population size over the past 250 years and its social and environmental implications.
- Interpret graphs and diagrams of human population growth.

Supplement
- Define *community* as all of the populations of different species in an ecosystem.
- Define *ecosystem* as a unit containing the community of organisms and their environment, interacting together, e.g. a decomposing log, or a lake.
- Identify the lag, exponential (log), stationary and death phases in the sigmoid population growth curve for a population growing in an environment with limited resources.
- Explain the factors that lead to each phase in the sigmoid curve of population growth, making reference, where appropriate, to the role of limiting factors.

20. Biotechnology and genetic engineering

20.1 Biotechnology and genetic engineering

Core
- State that bacteria are useful in biotechnology and genetic engineering due to their rapid reproduction rate and their ability to make complex molecules.

Supplement
- Discuss why bacteria are useful in biotechnology and genetic engineering, limited to:
 - lack of ethical concerns over their manipulation and growth
 - genetic code shared with all other organisms
 - presence of plasmids.
20.2 Biotechnology

Core
- Describe the role of anaerobic respiration in yeast during production of ethanol for biofuels
- Describe the role of anaerobic respiration in yeast during bread-making
- Investigate and describe the use of pectinase in fruit juice production
- Investigate and describe the use of biological washing powders that contain enzymes

Supplement
- Investigate and explain the use of lactase to produce lactose-free milk
- Describe the role of the fungus *Penicillium* in the production of the antibiotic penicillin
- Explain how fermenters are used in the production of penicillin

20.3 Genetic engineering

Core
- Define *genetic engineering* as changing the genetic material of an organism by removing, changing or inserting individual genes
- State examples of genetic engineering:
 - the insertion of human genes into bacteria to produce human insulin
 - the insertion of genes into crop plants to confer resistance to herbicides
 - the insertion of genes into crop plants to confer resistance to insect pests
 - the insertion of genes into crop plants to provide additional vitamins

Supplement
- Outline genetic engineering using bacterial production of a human protein as an example, limited to:
 - isolation of the DNA making up a human gene using restriction enzymes, forming sticky ends
 - cutting of bacterial plasmid DNA with the same restriction enzymes, forming complementary sticky ends
 - insertion of human DNA into bacterial plasmid DNA using DNA ligase to form a recombinant plasmid
 - insertion of plasmid into bacteria (specific detail is not required)
 - replication of bacteria containing recombinant plasmids which make human protein as they express the gene
- Discuss the advantages and disadvantages of genetically modifying crops, such as soya, maize and rice
21. Human influences on ecosystems

21.1 Food supply

Core
- State how modern technology has resulted in increased food production in terms of:
 - agricultural machinery to use larger areas of land and improve efficiency
 - chemical fertilisers to improve yields
 - insecticides to improve quality and yield
 - herbicides to reduce competition with weeds
 - selective breeding to improve production by crop plants and livestock, e.g. cattle, fish and poultry

- Describe the negative impacts to an ecosystem of large-scale monocultures of crop plants
- Describe the negative impacts to an ecosystem of intensive livestock production

Supplement
- Discuss the social, environmental and economic implications of providing sufficient food for an increasing human global population
- Discuss the problems which contribute to famine including unequal distribution of food, drought and flooding, increasing population and poverty

21.2 Habitat destruction

Core
- Describe the reasons for habitat destruction, limited to:
 - increased area for food crop growth, livestock production and housing
 - extraction of natural resources
 - marine pollution

- State that through altering food webs and food chains, humans can have a negative impact on habitats
- List the undesirable effects of deforestation as an example of habitat destruction, to include extinction, loss of soil, flooding and increase of carbon dioxide in the atmosphere

Supplement
- Explain the undesirable effects of deforestation on the environment
21.3 Pollution

Core
- State the sources and effects of pollution of land and water, e.g. rivers, lakes and the sea, by insecticides, herbicides and by nuclear fall-out
- State the sources and effects of pollution of water (rivers, lakes and the sea) by chemical waste, discarded rubbish, untreated sewage and fertilisers

Supplement
- Explain the process of eutrophication of water in terms of:
 - increased availability of nitrate and other ions
 - increased growth of producers
 - increased decomposition after death of producers
 - increased aerobic respiration by decomposers
 - reduction in dissolved oxygen
 - death of organisms requiring dissolved oxygen in water
- Discuss the effects of non-biodegradable plastics in the environment, in both aquatic and terrestrial ecosystems
- Discuss the causes and effects on the environment of acid rain
- State the measures that are taken to reduce sulfur dioxide pollution and reduce the impact of acid rain
- Explain how increases in carbon dioxide and methane concentrations in the atmosphere cause an enhanced greenhouse effect that leads to climate change
- Describe the negative impacts of female contraceptive hormones in water courses, limited to reduced sperm count in men and feminisation of aquatic organisms